Vanishing Gradients
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Problems with logistic activation
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Figure 2: Mean and standard deviation (vertical bars) of the
activation values (output of the sigmoid) during supervised
learning, for the different hidden layers of a deep archi-
tecture. The top hidden layer quickly saturates at O (slow-
ing down all learning), but then slowly desaturates around
epoch 100.

Understanding the difficulty of training deep feedforward neural networks (2010) — Xavier Glorot and Yoshua Bengio



Problems with tanh activation
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Figure 3: Top:98 percentiles (markers alone) and standard

deviation (solid lines with markers) of the distribution of Figure 4: Activation values normalized histogram at the

the activation values for the hyperbolic tangent networks in end of learning, averaged across units of the same layer and
the course of learning. We see the first hidden layer satu- across 300 test examples. Top: activation function is hyper-
rating first, then the second, etc. Bottom: 98 percentiles bolic tangent, we see important saturation of the lower lay-
(markers alone) and standard deviation (solid lines with ers. Bottom: activation function is softsign, we see many
markers) of the distribution of activation values for the soft- activation values around (-0.6,-0.8) and (0.6,0.8) where the
sign during learning. Here the different layers saturate less units do not saturate but are non-linear.

and do so together.

Understanding the difficulty of training deep feedforward neural networks (2010) — Xavier Glorot and Yoshua Bengio



Problems with squared error
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Figure 5: Cross entropy (black, surface on top) and
quadratic (red, bottom surface) cost as a function of two
weights (one at each layer) of a network with two layers,
W1 respectively on the first layer and W on the second,
output layer.

Understanding the difficulty of training deep feedforward neural networks (2010) — Xavier Glorot and Yoshua Bengio



Xavier Initialization
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Understanding the difficulty of training deep feedforward neural networks (2010) — Xavier Glorot and Yoshua Bengio



Xavier Initialization
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Understanding the difficulty of training deep feedforward neural networks (2010) — Xavier Glorot and Yoshua Bengio



Xavier Initialization
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Figure 10: 98 percentile (markers alone) and standard de-
viation (solid lines with markers) of the distribution of ac-
tivation values for hyperbolic tangent with normalized ini-
tialization during learning.

Understanding the difficulty of training deep feedforward neural networks (2010) — Xavier Glorot and Yoshua Bengio



Takeaways from Understanding the Difficulty

e The vanishing gradient problem is really about maintaining variance.
e Pay attention to your activations during training.

e Don't use logistic activation for deep learning.

e Use cross-entropy loss when possible.

e Maintain variance (flow of information) between layers.

e Xavier initialization.

Understanding the difficulty of training deep feedforward neural networks (2010) — Xavier Glorot and Yoshua Bengio



RelLU
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Kaiming Initialization
e Reproduced the analysis of Xavier
initialization for ReLU and PRelLU.

e Only differs by a factor that depends on
the activation function.

e Allowed them to train a 30-layer network.

imVar[wg] =1 %

Delving Deep into Rectifiers (2015) — Kaiming He et al.



Batch Normalization

e How do we maintain variance after
initialization?

e Re-normalize after every activation!

e Reduces the dependence of the gradient
on the scale of the parameters.

e “Internal covariate shift.”

Difficult:
o  Normalize each input independently.
o  Use mini-batch statistics.
o  Apply a learned linear transform
afterwards.

Input: Values of x over a mini-batch: B = {x1._m};
Parameters to be learned: v, 3
Output: {y; = BN, 5(z;)}

1 -
UB - Z; i // mini-batch mean
Q=

1 « - :
05— — ¥ (z; — up)? // mini-batch variance
i=1
T — :
T — — HE /I normalize

// scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

Batch Normalization (2015) — Sergey loffe and Christian Szegedy




Exponential Linear Unit (ELU)

e “Bias shift” is caused when layers have
non-zero mean activation.

e Reducing bias shift brings the gradient
closer to the “unit natural gradient”.

e Either re-center activations per layer (e.g.
batch norm) or use an activation with .
negative values. - %

e ELU outperforms ReLU + batch norm.
Figure 1: The rectified linear unit (ReLU),

the leaky ReLU (LReLU, o« = 0.1), the
shifted ReLLUs (SReL.Us), and the exponen-
tial linear unit (ELU, o = 1.0).

Fast and Accurate Deep Network Learning by Exponential Linear Units (2016) — Djork-Arné Clevert et al.



Self-Normalizing Neural Networks

e Parameterized ELU to “Scaled ELU”. e Solved for the parameters of SELU to

t thi iteria.
e Defined formal criteria for a network to meetthis criteria

maintain zero mean, unit variance. e Introduced alpha-dropout which maintains
mean and variance.
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Self-Normalizing Neural Networks (2017) — Gunter Klambauer et al.



Self-Normalizing Neural Networks
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Self-Normalizing Neural Networks (2017) — Gunter Klambauer et al.



