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Memory in Neural Networks: RNNs
(Recurrent Neural Networks)

e Enables linking dependencies across examples / timesteps
e Many different models, LSTM being very powerful / popular

LSTM (Long Short-Term Memory):
® Each neuron stores some information about previous activations
e Memory is updated to some degree on every example, but degree varies
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Problems with RNNSs

e Short term memory -- memory isn’t designed to last very long

o  Why?
m Memory is overwritten and forgotten to some degree at every
step

m Even if the degree of overwrite is small, it compounds quickly
m Always some amount of distortion

® Cell by cell updates means fragmentation

e Difficult to compartmentalize distinct memories

All because the memory is built into the network.




Memory outside Neural Networks: MANNSs

(Memory Augmented Neural Network)
® Uses a neural network to interface an external memory
e Designed to solve problems of RNNs from last slide

NTM (Neural Turing Machine):

External Input External Output
e Simple, early implementation of a MANN e \ -------------- / ------------------------------ 5
e Controller outputs vectors to control read Controler
and write heads /N
e r/w heads interact with external memory | Read Heads | | Write Heads 5
Whole model is end-to-end differentiable T l

External Memory




NTMs continued: how they work
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Figure 2: Flow Diagram of the Addressing Mechanism. The key vector, ki, and key

strength, [3,, are used to perform content-based addressing of the memory matrix, M.

The

resulting content-based weighting is interpolated with the weighting from the previous time step

based on the value of the interpolation gate, g.

The shift weighting, s;, determines whether

and by how much the weighting is rotated. Finally, depending on ¢, the weighting is sharpened

and used for memory access.




NTM: reading and writing basic equations

Reading:
Ty Z ll't(l)Mt(l)

M. ->the N x M memory matrix,

w,_-> vector of weights, length N,

Y w(i)=1, 0<w(i) <1,V

i

Writing:
erase.

r.->read vector - " _
M;(2) +— M;_1(2) [1 — we(2)ey]

e, -> erase vector, length M, range (0,1)
t add:

a,->add vector, length M M, (i) +— M,(i) + wy(i) a




Input:
Sequence of length L,
then nothing for L steps.

Output:
Nothing for L steps,
then repeat input sequence.

cost per sequence (bits)

NTM vs LSTM: Copy problem
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NTM vs LSTM: Copy problem generalization
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NTM vs LSTM: repeat copy problem

™
Length 10, Repeat 20

Input' Targets
Sequence of length L, Outputs
number of repeats (X), Length 20, Repeat 10

Targets

then nothing for L * X steps.

Outputs

Output:
Nothing for L+1 steps,
then repeat input sequence Targets

X times. Outputs

Targets

Outputs




Exciting applications: one-shot learning

Neural networks are powerful, but require a ton of data

e limits real world applications, small datasets are insufficient

® training requires large amounts of computing power and time
(expensive and slow)

e Can’tlearnin real time very well, takes too long and too much data

Solution: don’t just learn; learn how to learn first.




One-shot Learning with
Memory-Augmented Neural Networks

Input: Image, class of previous image

Output: class of current image

classes used, labels for each class, and specific samples are all shuffled between episodes
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(a) Task setup (b) Network strategy



(DNC)

e Improves upon NTM by using discrete

memory interaction and explicit
temporal connections
e discrete memory updates reduce

decay, enable longer memory
retention
® maintains end-to-end differentiability

NTM++: Differentiable Neural Computer

Illustration of the DNC architecture
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DNC: more detall

a. Controller

CO—

b. Read & Write Heads

Write Vector
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Erase Vector

Write Key

Read Key

Read Mode

Read Key

Read Mode
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d. Memory Usage
& Temporal Links
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http://www.youtube.com/watch?v=B9U8sI7TcMY
http://www.youtube.com/watch?v=BTSJ0-saaUc

bADI

bADbI Best Results

Task NTM DNC1 DNC2 MemN2N MemN2N DMN
(Joint) (Joint) (Joint) (Joint) 2" | (Single) ?' | (Single) 2°
1: 1 supporting fact : 31.5 0.0 0.0 0.0 0.0 0.0
2: 2 supporting facts & 54.5 13 04 1.0 0.3 1.8
3: 3 supporting facts : 439 24 1.8 6.8 2.1 4.8
4: 2 argument rels. 0.4 0.0 0.0 0.0 0.0 0.0 0.0
5: 3 argument rels. 35 0.8 0.5 0.8 6.1 0.8 0.7
6: yes/no questions 11.5 171 0.0 0.0 0.1 0.1 0.0
7: counting 15.0 17.8 0.2 0.6 6.6 20 3.1
8: lists/sets 16.5 13.8 0.1 03 2.7 0.9 3.5
9: simple negation 10.5 16.4 0.0 0.2 0.0 0.3 0.0
10: indefinite knowl. 229 16.6 0.2 0.2 0.5 0.0 0.0
11: basic coreference 6.1 15.2 0.0 0.0 0.0 0.1 0.1
12: conjunction 3.8 8.9 0.1 0.0 0.1 0.0 0.0
13: compound coref, 0.5 7.4 0.0 0.1 0.0 0.0 0.2
14: time reasoning 55.3 24.2 0.3 04 0.0 0.1 0.0
15: basic deduction 44.7 47.0 0.0 0.0 0.2 0.0 0.0
16: basic induction 52.6 53.6 524 55.1 0.2 51.8 0.6
17: positional reas. 39.2 25.5 241 12.0 41.8 18.6 40.4
18: size reasoning 4.8 2.2 4.0 0.8 8.0 53 4.7
19: path finding 89.5 43 0.1 3.9 75.7 2.3 65.5
20: agent motiv. 1.3 1.5 0.0 0.0 0.0 0.0 0.0
Mean Err. (%) 252 20.1 4.3 3.8 7.5 42 6.4
Failed (err. > 5%) 15 16 2 2 6 3 2




Issues with MANNSs

Memory size, addressing mechanism, and numbers of read and write
heads are additional hyperparameters -- makes training more difficult

® Scales poorly with size of memory

Additional complexity of implementation and experimental design
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Neural Turing Machines (Dec 2014)

https://arxiv.org/abs/1410.5401

One-shot Learning with Memory-Augmented Neural Networks (May 2016)

https://arxiv.org/abs/1605.06065

Hybrid computing using a neural network with dynamic external memory (Oct 2016)

https://www.nature.com/articles/nature20101
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