

Memory Augmented Neural Networks

Layton Hayes

Memory in Neural Networks: RNNs (Recurrent Neural Networks)

- Enables linking dependencies across examples / timesteps
- Many different models, LSTM being very powerful / popular

LSTM (Long Short-Term Memory):

- Each neuron stores some information about previous activations
- Memory is updated to some degree on every example, but degree varies

Problems with RNNs

- Short term memory -- memory isn't designed to last very long
 - Why?
 - Memory is overwritten and forgotten to some degree at every step
 - Even if the degree of overwrite is small, it compounds quickly
 - Always some amount of distortion
- Cell by cell updates means fragmentation
- Difficult to compartmentalize distinct memories

All because the memory is built into the network.

Memory outside Neural Networks: MANNs (Memory Augmented Neural Network)

- Uses a neural network to interface an external memory
- Designed to solve problems of RNNs from last slide

NTM (Neural Turing Machine):

- Simple, early implementation of a MANN
- Controller outputs vectors to control read and write heads
- r / w heads interact with external memory
- Whole model is **end-to-end differentiable**

NTMs continued: how they work

Addressing Mechanism

NTM: reading and writing basic equations

M₊ -> the N x M memory matrix,

w₊ -> vector of weights, length N,

$$\sum_{i} w_t(i) = 1, \qquad 0 \le w_t(i) \le 1, \, \forall i.$$

r_t -> read vector

e₊-> erase vector, length M, range (0,1)

 $a_{+} \rightarrow add vector, length M$

Reading:

$$\mathbf{r}_t \longleftarrow \sum_i w_t(i) \mathbf{M}_t(i)$$

Writing: erase:

$$\tilde{\mathbf{M}}_t(i) \longleftarrow \mathbf{M}_{t-1}(i) \left[\mathbf{1} - w_t(i)\mathbf{e}_t\right]$$

add:

$$\mathbf{M}_t(i) \longleftarrow \tilde{\mathbf{M}}_t(i) + w_t(i) \, \mathbf{a}_t$$

NTM vs LSTM: Copy problem

Input:

Sequence of length L, then nothing for L steps.

Output:

Nothing for L steps, then repeat input sequence.

NTM vs LSTM: Copy problem generalization

NTM vs LSTM: repeat copy problem

NTM

Input: Sequence of length L, number of repeats (X), then nothing for L * X steps.

Output:

Nothing for L+1 steps, then repeat input sequence X times.

Exciting applications: one-shot learning

- Neural networks are powerful, but require a ton of data
- limits real world applications, small datasets are insufficient
- training requires large amounts of computing power and time (expensive and slow)
- Can't learn in real time very well, takes too long and too much data

Solution: don't just learn; learn how to learn first.

One-shot Learning with Memory-Augmented Neural Networks

Input: Image, class of previous image

Output: class of current image

classes used, labels for each class, and specific samples are all shuffled between episodes

NTM++: Differentiable Neural Computer (DNC)

- Improves upon NTM by using discrete memory interaction and explicit temporal connections
- discrete memory updates reduce decay, enable longer memory retention
- maintains end-to-end differentiability

Illustration of the DNC architecture

DNC: more detail

DNC: task demonstrations

(Q: 6b4 2b6 1b5 3b1)

bAbl

	bAbl Best Results						
Task	LSTM (Joint)	NTM (Joint)	DNC1 (Joint)	DNC2 (Joint)	MemN2N (Joint) ²¹	MemN2N (Single) 21	DMN (Single) 20
1: 1 supporting fact 2: 2 supporting facts 3: 3 supporting facts 4: 2 argument rels. 5: 3 argument rels. 6: yes/no questions 7: counting 8: lists/sets 9: simple negation 10: indefinite knowl. 11: basic coreference 12: conjunction 13: compound coref. 14: time reasoning 15: basic deduction 16: basic induction 17: positional reas. 18: size reasoning 19: path finding 20: agent motiv.	24.5 53.2 48.3 0.4 3.5 11.5 15.0 16.5 10.5 22.9 6.1 3.8 0.5 55.3 44.7 52.6 39.2 4.8 89.5 1.3 25.2	31.5 54.5 43.9 0.0 0.8 17.1 17.8 13.8 16.4 16.6 15.2 8.9 7.4 24.2 47.0 53.6 25.5 2.2 4.3 1.5 20.1	0.0 1.3 2.4 0.0 0.5 0.0 0.2 0.1 0.0 0.2 0.0 0.1 0.0 0.3 0.0 52.4 24.1 4.0 0.1 0.0 0.4 3 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.1 0.0 0.2 0.0 0.2 0.1 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.1 0.0 0.2 0.0 0.2 0.0 0.2 0.1 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.1 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.0	0.0 0.4 1.8 0.0 0.8 0.0 0.6 0.3 0.2 0.2 0.2 0.0 0.1 0.4 0.0 55.1 12.0 0.8 3.9 0.0 3.8	0.0 1.0 6.8 0.0 6.1 0.1 6.6 2.7 0.0 0.5 0.0 0.1 0.0 0.2 0.2 0.2 41.8 8.0 75.7 0.0 0.0 0.5 0.0 0.2 0.2 0.2 0.2 0.2 0.0 0.5 0.0 0.2 0.2 0.0 0.5 0.0 0.2 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.5 0.0 0.2 0.5 0.0 0.5 0.5	0.0 0.3 2.1 0.0 0.8 0.1 2.0 0.9 0.3 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.1 0.0 0.3 0.0 0.1 0.2 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.3 0.0 0.0	0.0 1.8 4.8 0.0 0.7 0.0 3.1 3.5 0.0 0.0 0.1 0.0 0.2 0.0 0.0 0.2 0.0 0.6 40.4 4.7 65.5 0.0 0.0 0.6 40.4
Failed (err. $> 5\%$)	15	16	2	2	6	3	2

Issues with MANNs

- Memory size, addressing mechanism, and numbers of read and write heads are additional hyperparameters -- makes training more difficult
- Scales poorly with size of memory
- Additional complexity of implementation and experimental design

Source Papers

Neural Turing Machines (Dec 2014)

https://arxiv.org/abs/1410.5401

One-shot Learning with Memory-Augmented Neural Networks (May 2016)

https://arxiv.org/abs/1605.06065

Hybrid computing using a neural network with dynamic external memory (Oct 2016)

https://www.nature.com/articles/nature20101