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MOTIVATIONS

➤ Many applications. 

➤ Reinforcement Learning 

➤ Learn different generative models to simulate environment 
and future actions of an agent 

➤ Improve training in semi-supervised learning 

➤ Multi-modal outputs 

➤ Realistic generation 

➤ Super-resolution of images 

➤ Video frame prediction



GENERATIVE MODELS

➤ Traditionally trying to learn distributions  

➤ i.e. clustering algorithms 

➤ Alternatively can be used to generate samples that resemble 
real data. 



FINDING MAXIMUM LIKELIHOOD



WHAT ARE GANS?

➤ Two part generative network 

➤ Generative 

➤ Tries to correctly represent distribution of features from 
data you are training on 

➤ Discriminative 

➤ Tries to correctly differentiate an example from the 
generator from an example from the data



THE COUNTERFEITER AND THE DETECTIVE

➤ Think of generator as a 
counterfeiter and 
discriminator 

➤ Generator makes fakes to pass 
off as real 

➤ Discriminator has to tell the 
two apart 

➤ Both are always trying to one-
up each other.



OPTIMIZING A VALUE FUNCTION 

In other words, D and G play the following two-player minimax game with value function V (G,D):

min
G

max
D

V (D,G) = Ex⇠pdata(x)[logD(x)] + Ez⇠pz(z)[log(1�D(G(z)))]. (1)

In the next section, we present a theoretical analysis of adversarial nets, essentially showing that
the training criterion allows one to recover the data generating distribution as G and D are given
enough capacity, i.e., in the non-parametric limit. See Figure 1 for a less formal, more pedagogical
explanation of the approach. In practice, we must implement the game using an iterative, numerical
approach. Optimizing D to completion in the inner loop of training is computationally prohibitive,
and on finite datasets would result in overfitting. Instead, we alternate between k steps of optimizing
D and one step of optimizing G. This results in D being maintained near its optimal solution, so
long as G changes slowly enough. This strategy is analogous to the way that SML/PCD [31, 29]
training maintains samples from a Markov chain from one learning step to the next in order to avoid
burning in a Markov chain as part of the inner loop of learning. The procedure is formally presented
in Algorithm 1.

In practice, equation 1 may not provide sufficient gradient for G to learn well. Early in learning,
when G is poor, D can reject samples with high confidence because they are clearly different from
the training data. In this case, log(1 � D(G(z))) saturates. Rather than training G to minimize
log(1�D(G(z))) we can train G to maximize logD(G(z)). This objective function results in the
same fixed point of the dynamics of G and D but provides much stronger gradients early in learning.

. . .

(a) (b) (c) (d)

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) px from those of the generative distribution pg (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of x. The upward arrows show how the mapping x = G(z) imposes the non-uniform distribution pg on
transformed samples. G contracts in regions of high density and expands in regions of low density of pg . (a)
Consider an adversarial pair near convergence: pg is similar to pdata and D is a partially accurate classifier.
(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D⇤(x) =

pdata(x)
pdata(x)+pg(x) . (c) After an update to G, gradient of D has guided G(z) to flow to regions that are more likely
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a
point at which both cannot improve because pg = pdata. The discriminator is unable to differentiate between
the two distributions, i.e. D(x) = 1

2 .

4 Theoretical Results

The generator G implicitly defines a probability distribution pg as the distribution of the samples
G(z) obtained when z ⇠ pz . Therefore, we would like Algorithm 1 to converge to a good estimator
of pdata, if given enough capacity and training time. The results of this section are done in a non-
parametric setting, e.g. we represent a model with infinite capacity by studying convergence in the
space of probability density functions.

We will show in section 4.1 that this minimax game has a global optimum for pg = pdata. We will
then show in section 4.2 that Algorithm 1 optimizes Eq 1, thus obtaining the desired result.
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THEORETICAL

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our
experiments.

for number of training iterations do

for k steps do

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Sample minibatch of m examples {x(1), . . . ,x(m)} from data generating distribution
pdata(x).
• Update the discriminator by ascending its stochastic gradient:
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end for

• Sample minibatch of m noise samples {z(1), . . . , z(m)} from noise prior pg(z).
• Update the generator by descending its stochastic gradient:
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end for

The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

4.1 Global Optimality of pg = pdata

We first consider the optimal discriminator D for any given generator G.
Proposition 1. For G fixed, the optimal discriminator D is

D⇤
G(x) =

pdata(x)

pdata(x) + pg(x)
(2)

Proof. The training criterion for the discriminator D, given any generator G, is to maximize the
quantity V (G,D)

V (G,D) =

Z

x
pdata(x) log(D(x))dx+

Z

z
pz(z) log(1�D(g(z)))dz

=

Z

x
pdata(x) log(D(x)) + pg(x) log(1�D(x))dx (3)

For any (a, b) 2 R2 \ {0, 0}, the function y ! a log(y) + b log(1 � y) achieves its maximum in
[0, 1] at a

a+b . The discriminator does not need to be defined outside of Supp(pdata) [ Supp(pg),
concluding the proof.

Note that the training objective for D can be interpreted as maximizing the log-likelihood for es-
timating the conditional probability P (Y = y|x), where Y indicates whether x comes from pdata
(with y = 1) or from pg (with y = 0). The minimax game in Eq. 1 can now be reformulated as:

C(G) =max
D

V (G,D)

=Ex⇠pdata [logD
⇤
G(x)] + Ez⇠pz [log(1�D⇤

G(G(z)))] (4)
=Ex⇠pdata [logD

⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]

=Ex⇠pdata


log

pdata(x)

Pdata(x) + pg(x)

�
+ Ex⇠pg


log

pg(x)

pdata(x) + pg(x)

�
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OPTIMAL SOLUTIONS
➤ We can define a optimal 

discriminator for a given 
generator 

➤ Can think of the the 
solution to the as 
maximizing the value 
function  

➤ For optimal generator, the 
probability distribution 
matches the data 

➤ Thus a discriminator should 
be equally likely to say that a 
given x is data or generated
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Theorem 1. The global minimum of the virtual training criterion C(G) is achieved if and only if
pg = pdata. At that point, C(G) achieves the value � log 4.

Proof. For pg = pdata, D⇤
G(x) =

1
2 , (consider Eq. 2). Hence, by inspecting Eq. 4 at D⇤

G(x) =
1
2 , we

find C(G) = log 1
2 + log 1

2 = � log 4. To see that this is the best possible value of C(G), reached
only for pg = pdata, observe that

Ex⇠pdata [� log 2] + Ex⇠pg [� log 2] = � log 4

and that by subtracting this expression from C(G) = V (D⇤
G, G), we obtain:

C(G) = � log(4) +KL

✓
pdata

����
pdata + pg

2

◆
+KL

✓
pg

����
pdata + pg

2

◆
(5)

where KL is the Kullback–Leibler divergence. We recognize in the previous expression the Jensen–
Shannon divergence between the model’s distribution and the data generating process:

C(G) = � log(4) + 2 · JSD (pdata kpg ) (6)

Since the Jensen–Shannon divergence between two distributions is always non-negative and zero
only when they are equal, we have shown that C⇤ = � log(4) is the global minimum of C(G) and
that the only solution is pg = pdata, i.e., the generative model perfectly replicating the data generating
process.

4.2 Convergence of Algorithm 1

Proposition 2. If G and D have enough capacity, and at each step of Algorithm 1, the discriminator
is allowed to reach its optimum given G, and pg is updated so as to improve the criterion

Ex⇠pdata [logD
⇤
G(x)] + Ex⇠pg [log(1�D⇤

G(x))]

then pg converges to pdata

Proof. Consider V (G,D) = U(pg, D) as a function of pg as done in the above criterion. Note
that U(pg, D) is convex in pg . The subderivatives of a supremum of convex functions include the
derivative of the function at the point where the maximum is attained. In other words, if f(x) =
sup↵2A f↵(x) and f↵(x) is convex in x for every ↵, then @f�(x) 2 @f if � = arg sup↵2A f↵(x).
This is equivalent to computing a gradient descent update for pg at the optimal D given the cor-
responding G. supD U(pg, D) is convex in pg with a unique global optima as proven in Thm 1,
therefore with sufficiently small updates of pg , pg converges to px, concluding the proof.

In practice, adversarial nets represent a limited family of pg distributions via the function G(z; ✓g),
and we optimize ✓g rather than pg itself. Using a multilayer perceptron to define G introduces
multiple critical points in parameter space. However, the excellent performance of multilayer per-
ceptrons in practice suggests that they are a reasonable model to use despite their lack of theoretical
guarantees.

5 Experiments

We trained adversarial nets an a range of datasets including MNIST[23], the Toronto Face Database
(TFD) [28], and CIFAR-10 [21]. The generator nets used a mixture of rectifier linear activations [19,
9] and sigmoid activations, while the discriminator net used maxout [10] activations. Dropout [17]
was applied in training the discriminator net. While our theoretical framework permits the use of
dropout and other noise at intermediate layers of the generator, we used noise as the input to only
the bottommost layer of the generator network.

We estimate probability of the test set data under pg by fitting a Gaussian Parzen window to the
samples generated with G and reporting the log-likelihood under this distribution. The � parameter
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EXPERIMENTS

➤ Trained on MNIST, Toronto 
Face Database, and CIFAR-10

Model MNIST TFD
DBN [3] 138± 2 1909± 66

Stacked CAE [3] 121± 1.6 2110± 50
Deep GSN [6] 214± 1.1 1890± 29

Adversarial nets 225± 2 2057± 26

Table 1: Parzen window-based log-likelihood estimates. The reported numbers on MNIST are the mean log-
likelihood of samples on test set, with the standard error of the mean computed across examples. On TFD, we
computed the standard error across folds of the dataset, with a different � chosen using the validation set of
each fold. On TFD, � was cross validated on each fold and mean log-likelihood on each fold were computed.
For MNIST we compare against other models of the real-valued (rather than binary) version of dataset.

of the Gaussians was obtained by cross validation on the validation set. This procedure was intro-
duced in Breuleux et al. [8] and used for various generative models for which the exact likelihood
is not tractable [25, 3, 5]. Results are reported in Table 1. This method of estimating the likelihood
has somewhat high variance and does not perform well in high dimensional spaces but it is the best
method available to our knowledge. Advances in generative models that can sample but not estimate
likelihood directly motivate further research into how to evaluate such models.

In Figures 2 and 3 we show samples drawn from the generator net after training. While we make no
claim that these samples are better than samples generated by existing methods, we believe that these
samples are at least competitive with the better generative models in the literature and highlight the
potential of the adversarial framework.

a) b)

c) d)

Figure 2: Visualization of samples from the model. Rightmost column shows the nearest training example of
the neighboring sample, in order to demonstrate that the model has not memorized the training set. Samples
are fair random draws, not cherry-picked. Unlike most other visualizations of deep generative models, these
images show actual samples from the model distributions, not conditional means given samples of hidden units.
Moreover, these samples are uncorrelated because the sampling process does not depend on Markov chain
mixing. a) MNIST b) TFD c) CIFAR-10 (fully connected model) d) CIFAR-10 (convolutional discriminator
and “deconvolutional” generator)
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APPLICATIONS AND IMPROVEMENTS

➤ Conditional generative model  

➤ Conditional Generative Adversarial Networks (CGAN) 

➤ Semi-supervised learning 

➤ Improving training efficiency  



C-GAN
➤ Mimic GAN, but with 

added complexity of a 
given prior event. 

➤ Image tagging 

➤ Avoiding mode collapse



C-GAN
➤ Mimic GAN, but with 

added complexity of a 
given prior event. 

➤ Image tagging 

➤ Avoiding mode collapse

User tags + annotations Generated tags

montanha, trem, inverno,
frio, people, male, plant
life, tree, structures, trans-
port, car

taxi, passenger, line,
transportation, railway
station, passengers,
railways, signals, rail,
rails

food, raspberry, delicious,
homemade

chicken, fattening,
cooked, peanut, cream,
cookie, house made,
bread, biscuit, bakes

water, river

creek, lake, along, near,
river, rocky, treeline, val-
ley, woods, waters

people, portrait, female,
baby, indoor

love, people, posing, girl,
young, strangers, pretty,
women, happy, life

Table 2: Samples of generated tags

Also, in the current experiments we only use each tag individually. But by using multiple tags at
the same time (effectively posing generative problem as one of ‘set generation’) we hope to achieve
better results.

Another obvious direction left for future work is to construct a joint training scheme to learn the
language model. Works such as [12] has shown that we can learn a language model for suited for
the specific task.

Acknowledgments

This project was developed in Pylearn2 [7] framework, and we would like to thank Pylearn2 devel-
opers. We also like to thank Ian Goodfellow for helpful discussion during his affiliation at University
of Montreal. The authors gratefully acknowledge the support from the Vision & Machine Learning,
and Production Engineering teams at Flickr (in alphabetical order: Andrew Stadlen, Arel Cordero,
Clayton Mellina, Cyprien Noel, Frank Liu, Gerry Pesavento, Huy Nguyen, Jack Culpepper, John
Ko, Pierre Garrigues, Rob Hess, Stacey Svetlichnaya, Tobi Baumgartner, and Ye Lu).

References

[1] Bengio, Y., Mesnil, G., Dauphin, Y., and Rifai, S. (2013). Better mixing via deep representations. In
ICML’2013.

[2] Bengio, Y., Thibodeau-Laufer, E., Alain, G., and Yosinski, J. (2014). Deep generative stochastic net-
works trainable by backprop. In Proceedings of the 30th International Conference on Machine Learning
(ICML’14).

6



C-GAN
➤ Mimic GAN, but with 

added complexity of a 
given prior event. 

➤ Image tagging 

➤ Avoiding mode collapse

Model MNIST
DBN [1] 138± 2

Stacked CAE [1] 121± 1.6
Deep GSN [2] 214± 1.1

Adversarial nets 225± 2
Conditional adversarial nets 132± 1.8

Table 1: Parzen window-based log-likelihood estimates for MNIST. We followed the same procedure as [8]
for computing these values.

The discriminator maps x to a maxout [6] layer with 240 units and 5 pieces, and y to a maxout layer
with 50 units and 5 pieces. Both of the hidden layers mapped to a joint maxout layer with 240 units
and 4 pieces before being fed to the sigmoid layer. (The precise architecture of the discriminator
is not critical as long as it has sufficient power; we have found that maxout units are typically well
suited to the task.)

The model was trained using stochastic gradient decent with mini-batches of size 100 and ini-
tial learning rate of 0.1 which was exponentially decreased down to .000001 with decay factor of
1.00004. Also momentum was used with initial value of .5 which was increased up to 0.7. Dropout
[9] with probability of 0.5 was applied to both the generator and discriminator. And best estimate of
log-likelihood on the validation set was used as stopping point.

Table 1 shows Gaussian Parzen window log-likelihood estimate for the MNIST dataset test data.
1000 samples were drawn from each 10 class and a Gaussian Parzen window was fitted to these
samples. We then estimate the log-likelihood of the test set using the Parzen window distribution.
(See [8] for more details of how this estimate is constructed.)

The conditional adversarial net results that we present are comparable with some other network
based, but are outperformed by several other approaches – including non-conditional adversarial
nets. We present these results more as a proof-of-concept than as demonstration of efficacy, and
believe that with further exploration of hyper-parameter space and architecture that the conditional
model should match or exceed the non-conditional results.

Fig 2 shows some of the generated samples. Each row is conditioned on one label and each column
is a different generated sample.

Figure 2: Generated MNIST digits, each row conditioned on one label

4.2 Multimodal

Photo sites such as Flickr are a rich source of labeled data in the form of images and their associated
user-generated metadata (UGM) — in particular user-tags.

4



SEMI-SUPERVISED GAN
➤ Train generative network and 

classifier at the same time 

➤ By doing so: 

➤ Cut down on training time 
and improve accuracy 

➤ Useful when there isn’t a lot 
of data for training.

Semi-Supervised Learning with Generative Adversarial Networks

Algorithm 1 SGAN Training Algorithm
Input: I: number of total iterations
for i = 1 to I do

Draw m noise samples {z(1), . . . , z(m)} from noise
prior pg(z).
Draw m examples {(x(1), y(1)), . . . , (x(m), y(m))}
from data generating distribution pd(x).
Perform gradient descent on the parameters of D w.r.t.
the NLL of D/C’s outputs on the combined minibatch
of size 2m.
Draw m noise samples {z(1), . . . , z(m)} from noise
prior pg(z).
Perform gradient descent on the parameters of G w.r.t.
the NLL of D/C’s outputs on the minibatch of size m.

end for

[CLASS-1, CLASS-2, . . . CLASS-N, FAKE]. In this case,
D can also act as C. We call this network D/C.

Training an SGAN is similar to training a GAN. We simply
use higher granularity labels for the half of the minibatch
that has been drawn from the data generating distribution.
D/C is trained to minimize the negative log likelihood with
respect to the given labels and G is trained to maximize
it, as shown in Algorithm 1. We did not use the modified
objective trick described in Section 3 of Goodfellow et al.
(2014).

Note: in concurrent work, (Salimans et al., 2016) propose
the same method for augmenting the discriminator and per-
form a much more thorough experimental evaluation of the
technique.

3. Results

The experiments in this paper were conducted with
https://github.com/DoctorTeeth/supergan, which borrows
heavily from https://github.com/carpedm20/DCGAN-
tensorflow and which contains more details about the
experimental setup.

3.1. Generative Results

We ran experiments on the MNIST dataset (LeCun et al.,
1998) to determine whether an SGAN would result in better
generative samples than a regular GAN. Using an architec-
ture similar to that in Radford et al. (2015), we trained an
SGAN both using the actual MNIST labels and with only
the labels REAL and FAKE. Note that the second config-
uration is semantically identical to a normal GAN. Figure
1 contains examples of generative outputs from both GAN
and SGAN. The SGAN outputs are significantly more clear
than the GAN outputs. This seemed to hold true across
different initializations and network architectures, but it is

Table 1. Classifier Accuracy

EXAMPLES CNN SGAN

1000 0.965 0.964
100 0.895 0.928
50 0.859 0.883
25 0.750 0.802

hard to do a systematic evaluation of sample quality for
varying hyperparameters.

Figure 1. Output samples from SGAN and GAN after 2 MNIST
epochs. SGAN is on the left and GAN is on the right.

3.2. Classifier Results

We also conducted experiments on MNIST to see whether
the classifier component of the SGAN would perform bet-
ter than an isolated classifier on restricted training sets. To
train the baseline, we train SGAN without ever updating G.
SGAN outperforms the baseline in proportion to how much
we shrink the training set, suggesting that forcing D and C
to share weights improves data-efficiency. Table 1 includes
detailed performance numbers. To compute accuracy, we
took the maximum of the outputs not corresponding to the
FAKE label. For each model, we did a random search on
the learning rate and reported the best result.

4. Conclusion and Future Work

We are excited to explore the following related ideas:

• Share some (but not all) of the weights between D and
C, as in the dual autoencoder (Sutskever et al., 2015).
This could allow some weights to be specialized to
discrimination and some to classification.

• Make GAN generate examples with class labels
(Mirza & Osindero, 2014). Then ask D/C to as-
sign one of 2N labels [REAL-ZERO, FAKE-ZERO,
. . . ,REAL-NINE, FAKE-NINE].
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