GENERATIVE ADVERSARIAL NETWORKS

Rajeswari Sivakumar Deep Learning @UGA 2/2/17

MOTIVATIONS

- ► Many applications.
- Reinforcement Learning
 - Learn different generative models to simulate environment and future actions of an agent
- Improve training in semi-supervised learning
- Multi-modal outputs
- ► Realistic generation
 - Super-resolution of images
 - Video frame prediction

GENERATIVE MODELS

Traditionally trying to learn distributions

- ► i.e. clustering algorithms
- Alternatively can be used to generate samples that resemble real data.

FINDING MAXIMUM LIKELIHOOD

WHAT ARE GANS?

- ► Two part generative network
- ► Generative
 - Tries to correctly represent distribution of features from data you are training on
- Discriminative
 - Tries to correctly differentiate an example from the generator from an example from the data

THE COUNTERFEITER AND THE DETECTIVE

- Think of generator as a counterfeiter and discriminator
- Generator makes fakes to pass off as real
- Discriminator has to tell the two apart
- Both are always trying to oneup each other.

OPTIMIZING A VALUE FUNCTION

$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$

THEORETICAL

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

$$D_G^*(\boldsymbol{x}) = \frac{p_{data}(\boldsymbol{x})}{p_{data}(\boldsymbol{x}) + p_g(\boldsymbol{x})}$$

$$\begin{split} C(G) &= \max_{D} V(G, D) \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}} [\log (1 - D_{G}^{*}(G(\boldsymbol{z})))] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} [\log D_{G}^{*}(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} [\log (1 - D_{G}^{*}(\boldsymbol{x}))] \\ &= \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}} \left[\log \frac{p_{\text{data}}(\boldsymbol{x})}{P_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] + \mathbb{E}_{\boldsymbol{x} \sim p_{g}} \left[\log \frac{p_{g}(\boldsymbol{x})}{p_{\text{data}}(\boldsymbol{x}) + p_{g}(\boldsymbol{x})} \right] \end{split}$$

$$p_g = p_{\text{data}}, D_G^*(\boldsymbol{x}) = \frac{1}{2},$$

$$C(G) = -\log(4) + KL\left(p_{\text{data}} \left\| \frac{p_{\text{data}} + p_g}{2} \right) + KL\left(p_g \left\| \frac{p_{\text{data}} + p_g}{2} \right)\right)$$

$$C^* = -\log(4)$$

OPTIMAL SOLUTIONS

 We can define a optimal discriminator for a given generator

- Can think of the the solution to the as maximizing the value function
- For optimal generator, the probability distribution matches the data
 - Thus a discriminator should be equally likely to say that a given x is data or generated

Π 6 3 2 0 8

EXPERIMENTS

Trained on MNIST, Toronto
Face Database, and CIFAR-10

Model	MNIST	TFD
DBN [3]	138 ± 2	1909 ± 66
Stacked CAE [3]	121 ± 1.6	2110 ± 50
Deep GSN [6]	214 ± 1.1	1890 ± 29
Adversarial nets	225 ± 2	2057 ± 26

APPLICATIONS AND IMPROVEMENTS

- Conditional generative model
 - Conditional Generative Adversarial Networks (CGAN)
- Semi-supervised learning
 - Improving training efficiency

C-GAN

- Mimic GAN, but with added complexity of a given prior event.
- ► Image tagging
- ► Avoiding mode collapse

 User tags + annotations	Generated tags	
montanha, trem, inverno, frio, people, male, plant life, tree, structures, trans- port, car	taxi, passenger, line, transportation, railway station, passengers, railways, signals, rail, rails	Mimic GAN, but with added complexity of a given prior event.
food, raspberry, delicious,	chicken, fattening, cooked, peanut, cream, cookie, house made,	Image tagging
homemade	bread, biscuit, bakes	Avoiding mode collapse
water, river	creek, lake, along, near, river, rocky, treeline, val- ley, woods, waters	
people, portrait, female, baby, indoor	love, people, posing, girl, young, strangers, pretty, women, happy, life	

C-GAN

Table 2: Samples of generated tags

Figure 2: Generated MNIST digits, each row conditioned on one label

C-GAN

- Mimic GAN, but with added complexity of a given prior event.
- ► Image tagging
- ► Avoiding mode collapse

Figure 1. Output samples from SGAN and GAN after 2 MNIST epochs. SGAN is on the left and GAN is on the right.

Table 1.	Classifier	Accuracy
----------	------------	----------

Examples	CNN	SGAN
1000	0.965	0.964
100	0.895	0.928
50	0.859	0.883
25	0.750	0.802

SEMI-SUPERVISED GAN

- Train generative network and classifier at the same time
- ► By doing so:
 - Cut down on training time and improve accuracy
- Useful when there isn't a lot of data for training.

QUESTIONS?