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The problem

I Smartphones are becoming more and more essential to
humans.

I As of 2016, 3.9 billion smartphone subscriptions
(expected to reach 6.8 billion in 2022) out of 7.5 billion
mobile phone subscriptions in the world [1].

I Yet, interaction with smartphones is largely bound to
their screens (limited by screen size, battery power and
computation capability).
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The problem

I Quest for intuitive ways to interact with smartphones;
examples: speech recognition, gesture recognition.

I Based on the sensing mechanism, gesture recognition
systems can be grouped into:
I Camera based systems [2]. Limited camera field of

view, sensitive to lighting conditions and consume high
power.

I Inertia based systems [3]. Sensors (e.g.
accelerometers, gyroscopes) have to be carried by users.

I Radio Frequency (RF) based systems.
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RF based gesture recognition

Some approaches tries to introduce new HW into the
smartphones:

I Google’s Soli project [4].

I Specialized gesture recognition radar chip.

Other approaches leverage the existing phone capabilities:

I Sense activity and gestures using FM,
GSM/WCDM/LTE or Wi-Fi signals [5], [6], [7] and [8].
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RF based gesture recognition

Advantages:

I Require no line of sight between the gesture subject and
the smartphone.

I Consume less power.

I Ubiquitous.
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Radio wave propagation

Static or moving objects (e.g. a human hand) impact the
signal power at the receiving end.
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Sample RSSI measurements (typing in a
keyboard)
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Sample RSSI measurements (performing Swipe
gesture)
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Hand gesture recognition from Wi-Fi RSSI

Prediction: no gesture (or Noise)
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Hand gesture recognition from Wi-Fi RSSI

Prediction: Push
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Challenges

I Hand gestures and other background activities (e.g.
walking) have closely similar impacts on the Wi-Fi
signal.

I Wi-Fi RSSI stream is bursty (occurs in short non regular
episodes).
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Wi-Fi RSSI stream is bursty

Wi-Fi frames received by a smartphone while browsing
Facebook.
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Wi-Fi RSSI stream is bursty

Wi-Fi frames received by a smartphone while playing a
Youtube video.
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Previous work

I Wi-Fi RSSI was used to recognize activities (e.g.
walking) on smartphones [9].

I It was also used to recognize moving hand gestures on
smartphones [8], [10] and [11].

I But, to gain access to enough RSSI samples:
I The Wi-Fi interface has to operate on the monitor

mode (which prevents other applications from using
the Wi-Fi interface).

I A rooted Android OS was needed, to install a special
Wi-Fi firmware.

I Supported by a limited subset of the Wi-Fi devices.
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Project objectives

Demonstrate the possibility to recognize dynamic hand
gestures on smartphones from the Wi-Fi RSSI stream,
without modification, in a passive online setting.

I dynamic: involves hand movement.

I passive: leverages existing Wi-Fi sources.

I online: in realtime on the smartphone.

I without modification: without requiring additional
HW, or core SW modification.
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Proposed solution

Core ideas:

I Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.

I Use an LSTM RNN model:
I Suitable for sequential inputs (e.g. audio and video

signals).

I Suitable preprocessing of the input Wi-Fi RSSI stream.

37 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Proposed solution

Core ideas:

I Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.

I Use an LSTM RNN model:
I Suitable for sequential inputs (e.g. audio and video

signals).

I Suitable preprocessing of the input Wi-Fi RSSI stream.

37 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Proposed solution

Core ideas:

I Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.

I Use an LSTM RNN model:

I Suitable for sequential inputs (e.g. audio and video
signals).

I Suitable preprocessing of the input Wi-Fi RSSI stream.

37 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Proposed solution

Core ideas:

I Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.

I Use an LSTM RNN model:
I Suitable for sequential inputs (e.g. audio and video

signals).

I Suitable preprocessing of the input Wi-Fi RSSI stream.

37 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Proposed solution

Core ideas:

I Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.

I Use an LSTM RNN model:
I Suitable for sequential inputs (e.g. audio and video

signals).

I Suitable preprocessing of the input Wi-Fi RSSI stream.

37 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Traffic induction

38 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Traffic induction

39 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Traffic induction

40 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

LSTM RNN model

I N = 200 neurons/LSTM cell

I T = 50 (RNN time steps)
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Collected dataset

Performed hand gestures:
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Collected dataset

Swipe samples collection session:
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Collected dataset

Sample Swipe gestures:
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Collected dataset

Sample Push gestures:
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Collected dataset

Sample Pull gestures:
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Collected dataset

Spatial setup:
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Collected dataset

I Summary of the collected dataset:

Dataset 1 2 3 4

Location room room room two rooms
Induction

√ √ √

Internet
√

Size 440 432 434 337

I An Android app was developed to collect the dataset.
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Offline experiments

Training and Evaluation of the LSTM RNN model was
conducted on a Laptop (hence offline), using the collected
dataset.
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Offline experiments

Traffic induction impact on prediction accuracy.

Dataset 1 2 3 4

Location room room room two rooms
Induction

√ √ √

Internet
√

LSTM accuracy 91% 83% 78% 87%
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Offline experiments

Swipe and Push gestures are hardly distinguishable when
induction is OFF.

Left: Swipe gesture with induction ON. Middle and Right:
Swipe and Push gestures respectively performed while no
traffic is OFF.
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Offline experiments

Prediction accuracy as a function of the number of samples
per prediction window.

10 20 30 40 50 80 100

85

8888
89

91

89

83

samples per window

ac
cu

ra
cy

54 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Offline experiments

Prediction accuracy as a function of the number of the
hidden (LSTM) layers.
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Offline experiments

The LSTM RNN model accuracy when trained with fractions
of (Dataset1 + Dataset2 + Dataset4).
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Online experiments

Evaluating the full solution implementation (an Android
app) on a smartphone.
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Online experiments

Spatial setup
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Online experiments

I Accuracy of Line-of-sight (LOS) experiments is ∼81%.

I Accuracy of no Line-of-sight (No LOS) experiments is
∼74%.

I The Overall accuracy is ∼78%.
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Online experiments

When no hand gesture is performed over a period of thirty
minutes, the false positivie rate was ∼8%.

Gesture number of predictions (%)

Noise (correct prediction) 1652 (92.1%)
Swipe (False positive) 61 (3.4%)
Push (False positive) 62 (3.5%)
Swipe (False positive) 18 (1.0%)

60 / 77



Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Smartphones

Dr. Ramviyas
Parasuraman

Motivation

Challenges

Previous work

Objectives

Proposed solution

Experiments

Demo

Discussion

Questions

References

Demo
Click here - Takes you to YouTube!
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Conclusion

I We demonstrated its possible to predict hand gestures
on unmodified smartphones from Wi-Fi RSSI.

I The recognition accuracy can be improved by collecting
more data, and increasing the model size.

I The recognition accuracy can be improved by sampling
RSSI at higher frequency.
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Limitations

I Vulnerability to interference from background activities.

I High CPU usage (25%).
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Publication

Published in IEEE Sensors (2019).
Citation: Haseeb MA, Parasuraman R. Wisture:
Touch-Less Hand Gesture Classification in Unmodified
Smartphones Using Wi-Fi Signals. IEEE Sensors
Journal. 2018 Oct 16;19(1):257-67.
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Publication

We open-sourced most of the codes and dataset (data
collection and Wisture recognition).
https://github.com/mohaseeb/wisture
https://www.ieee-dataport.org/documents/wi-fi-signal-
strength-measurements-smartphone-various-hand-gestures
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Future work

Introducing a preamble gesture detection mode:

I Preamble gesture needs to be:

hard to confuse with
noise and require small power to detect.

I Push gesture is a candidate; easy to recognize without
induction.

Benefits:

I Increased robustness against interference.

I Reduced power consumption.
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Future work

Native support on Wi-Fi devices for a cheap high frequency
sampling of Wi-Fi RSS.

I By inducing traffic at the Wi-Fi device level, the OS is
bypassed, which results in a higher throughput at a
reduced power level.

I Reliable recognition capability at lower cost, compared
to, for example, introducing a completely new HW like
Google’s Soli [4].
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Offline experiments

Prediction accuracies, training and prediction times for
different algorithms evaluated using Dataset1.

Algorithm Accuracy Sample prediction time (ms)

K-NN DTW 90% (±28) 964.15
FS 85% (±4.6) 0.01
STE 91% (±1.1) 26.86
LTS 93% (±2.3) 9.29
EE 93% (±1.7) 23.09
COTE 94% (±2.4) 178.20
LSTM RNN 91% (±3.1) 7.04

STE, EE and COTE are ensemble methods that are
computationally heavy [12].
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