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The problem

» Smartphones are becoming more and more essential to
humans.

» As of 2016, 3.9 billion smartphone subscriptions
(expected to reach 6.8 billion in 2022) out of 7.5 billion
mobile phone subscriptions in the world [1].
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The problem

» Smartphones are becoming more and more essential to
humans.

» As of 2016, 3.9 billion smartphone subscriptions
(expected to reach 6.8 billion in 2022) out of 7.5 billion
mobile phone subscriptions in the world [1].

P Yet, interaction with smartphones is largely bound to
their screens (limited by screen size, battery power and
computation capability).
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The problem

» Quest for intuitive ways to interact with smartphones;
examples: speech recognition, gesture recognition.
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The problem

» Quest for intuitive ways to interact with smartphones;
examples: speech recognition, gesture recognition.

» Based on the sensing mechanism, gesture recognition
systems can be grouped into:

» Camera based systems [2]. Limited camera field of
view, sensitive to lighting conditions and consume high
power.

> Inertia based systems [3]. Sensors (e.g.

accelerometers, gyroscopes) have to be carried by users.

> Radio Frequency (RF) based systems.
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RF based gesture recognition

Some approaches tries to introduce new HW into the
smartphones:

» Google's Soli project [4].

» Specialized gesture recognition radar chip.
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RF based gesture recognition

Some approaches tries to introduce new HW into the
smartphones:

» Google's Soli project [4].
» Specialized gesture recognition radar chip.

Other approaches leverage the existing phone capabilities:
» Sense activity and gestures using FM,

GSM/WCDM/LTE or Wi-Fi signals [5], [6], [7] and [8].
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RF based gesture recognition

Advantages:

» Require no line of sight between the gesture subject and
the smartphone.

» Consume less power.
> Ubiquitous.
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Radio wave propagation

>
L Reflected signal
((( [ ))) e Directsignal .
o) -
RF Source RN RF Destination
Diffracted signal

Static or moving objects (e.g. a human hand) impact the
signal power at the receiving end.
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Wi-Fi RSSI
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Wi-Fi RSSI

IP Packets
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For every received
frame, a
measurement
proportional to the
Radio signal strength
(aka RSSI) is made
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Hand gesture recognition from Wi-Fi RSSI

Input: RSSI stream

Gesture

Output: Gesture predictions

Noise, Swipe, Noise, Push, ...
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Hand gesture recognition from Wi-Fi RSSI

RSS!
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Hand gesture recognition from Wi-Fi RSSI

RSSI
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Hand gesture recognition from Wi-Fi RSSI

RSS!
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Hand gesture recognition from Wi-Fi RSS

RSS!
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Hand gesture recognition from Wi-Fi RSSI

RSSI1
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Hand gesture recognition from Wi-Fi RSSI

RSSI
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Hand gesture recognition from Wi-Fi RSSI

RSSI
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Challenges

» Hand gestures and other background activities (e.g.
walking) have closely similar impacts on the Wi-Fi
signal.
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Challenges

» Hand gestures and other background activities (e.g.
walking) have closely similar impacts on the Wi-Fi
signal.

» Wi-Fi RSSI stream is bursty (occurs in short non regular
episodes).

Learning On-Air
Hand Gestures
From Wi-Fi
Signals on
Smartphones

Motivation

Previous work
Objectives
Proposed solution
Experiments
Demo

Discussion
Questions

References

29/77



Wi-Fi RSSI stream is bursty

Wi-Fi frames received by a smartphone while browsing
Facebook.
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Wi-Fi RSSI stream is bursty

Wi-Fi frames received by a smartphone while playing a

Youtube video.
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Previous work
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Previous work

» Wi-Fi RSSI was used to recognize activities (e.g.
walking) on smartphones [9].
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smartphones [8], [10] and [11].
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Previous work

» Wi-Fi RSSI was used to recognize activities (e.g.
walking) on smartphones [9].

P It was also used to recognize moving hand gestures on
smartphones [8], [10] and [11].
» But, to gain access to enough RSSI samples:

» The Wi-Fi interface has to operate on the monitor
mode (which prevents other applications from using
the Wi-Fi interface).

» A rooted Android OS was needed, to install a special
Wi-Fi firmware.

» Supported by a limited subset of the Wi-Fi devices.
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Objectives
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Project objectives

Demonstrate the possibility to recognize dynamic hand
gestures on smartphones from the Wi-Fi RSSI stream,
without modification, in a passive online setting.

» dynamic: involves hand movement.
P> passive: leverages existing Wi-Fi sources.
» online: in realtime on the smartphone.

» without modification: without requiring additional
HW, or core SW modification.
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Proposed solution
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Proposed solution

Core ideas:

» Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.
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Proposed solution

Core ideas:
» Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.
» Use an LSTM RNN model:
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Proposed solution

Core ideas:
» Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.
» Use an LSTM RNN model:

» Suitable for sequential inputs (e.g. audio and video
signals).
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Proposed solution

Core ideas:
» Induce Wi-Fi traffic between the AP and the
smartphone to make enough RSSI measurements.
» Use an LSTM RNN model:

» Suitable for sequential inputs (e.g. audio and video
signals).

» Suitable preprocessing of the input Wi-Fi RSSI stream.
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Traffic induction

((( )))

echo reply

A smartphone continuously sending ICMP echo request messages to a Wi-Fi
Access Point (and receiving the corresponding echo reply messages)
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Traffic induction
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LSTM RNN model Vand Costines
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Recognition system diagram

Gesture recognition solution
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Experiments
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Collected dataset

Performed hand gestures:
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Collected dataset

Swipe samples collection session:

RSSI
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Collected dataset

Sample Swipe gestures:
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Collected dataset

Sample Push gestures:
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Collected dataset ey

From Wi-Fi
Signals on
Smartphones
Sample Pull gestures:
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Collected dataset

» Summary of the collected dataset:

Dataset 1 2 3 4
Location | room | room | room | two rooms
Induction |/ V V

Internet vV

Size 440 432 434 337

» An Android app was developed to collect the dataset.
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Offline experiments

Training and Evaluation of the LSTM RNN model was
conducted on a Laptop (hence offline), using the collected
dataset.
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Offline experiments

Traffic induction impact on prediction accuracy.

Dataset 1 2 3 4
Location room | room | room | two rooms
Induction V vV Vv
Internet Vv

LSTM accuracy | 91% | 83% | 78% 87%
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Offline experiments

Swipe and Push gestures are hardly distinguishable when

induction is OFF.
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Left: Swipe gesture with induction ON. Middle and Right:
Swipe and Push gestures respectively performed while no

traffic is OFF.
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Learning On-Air
Hand Gestures

Offline experiments
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Learning On-Air
Hand Gestures
From Wi-Fi
Signals on

Prediction accuracy as a function of the number of the Smartphones
hidden (LSTM) layers.
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Offline experiments

The LSTM RNN model accuracy when trained with fractions

of (Datasetl + Dataset2 + Dataset4).
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Learning On-Air
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Online experiments

Signals on
Smartphones
Evaluating the full solution implementation (an Android
app) on a smartphone.
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Online experiments

Spatial setup
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Learning On-Air
Hand Gestures

Online experiments

From Wi-Fi
Signals on
» Accuracy of Line-of-sight (LOS) experiments is ~81%. STerhenes
» Accuracy of no Line-of-sight (No LOS) experiments is
N74% Motivation
» The Overall accuracy is ~78%. Gielfgs=:
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Online experiments

When no hand gesture is performed over a period of thirty

minutes, the false positivie rate was ~8%.

Gesture

number of predictions (%)

Noise (correct prediction)
Swipe (False positive)
Push (False positive)
Swipe (False positive)

1652 (92.1%)
61 (3.4%)
62 (3.5%)
18 (1.0%)

Learning On-Air
Hand Gestures
From Wi-Fi
Signals on
Smartphones

Motivation
Challenges
Previous work
Objectives

Proposed solution

Demo
Discussion
Questions

References

60 /77



Demo

Click here - Takes you to YouTube!
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https://www.youtube.com/watch?v=5v4KpAFvxpU

Discussion
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Conclusion

> We demonstrated its possible to predict hand gestures
on unmodified smartphones from Wi-Fi RSSI.
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Conclusion

> We demonstrated its possible to predict hand gestures
on unmodified smartphones from Wi-Fi RSSI.

» The recognition accuracy can be improved by collecting
more data, and increasing the model size.
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Conclusion

> We demonstrated its possible to predict hand gestures
on unmodified smartphones from Wi-Fi RSSI.

» The recognition accuracy can be improved by collecting
more data, and increasing the model size.

» The recognition accuracy can be improved by sampling
RSSI at higher frequency.

Learning On-Air
Hand Gestures
From Wi-Fi
Signals on
Smartphones

Motivation
Challenges
Previous work
Objectives
Proposed solution
Experiments

Demo

Questions

References

63/77



Limitations

» Vulnerability to interference from background activities.
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Limitations

» Vulnerability to interference from background activities.
» High CPU usage (25%).
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Publication

Published in IEEE Sensors (2019).

Citation: Haseeb MA, Parasuraman R. Wisture:
Touch-Less Hand Gesture Classification in Unmodified
Smartphones Using Wi-Fi Signals. IEEE Sensors
Journal. 2018 Oct 16;19(1):257-67.
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Publication

We open-sourced most of the codes and dataset (data
collection and Wisture recognition).
https://github.com/mohaseeb/wisture
https://www.ieee-dataport.org/documents/wi-fi-signal-
strength-measurements-smartphone-various-hand-gestures
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https://github.com/mohaseeb/wisture
https://www.ieee-dataport.org/documents/wi-fi-signal-strength-measurements-smartphone-various-hand-gestures
https://www.ieee-dataport.org/documents/wi-fi-signal-strength-measurements-smartphone-various-hand-gestures

Future work

Introducing a preamble gesture detection mode:

> Preamble gesture needs to be:
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Future work
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Future work

Introducing a preamble gesture detection mode:

> Preamble gesture needs to be: hard to confuse with
noise and require small power to detect.

» Push gesture is a candidate; easy to recognize without
induction.
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Future work

Introducing a preamble gesture detection mode:

> Preamble gesture needs to be: hard to confuse with
noise and require small power to detect.

» Push gesture is a candidate; easy to recognize without
induction.

Benefits:
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Introducing a preamble gesture detection mode:

> Preamble gesture needs to be: hard to confuse with
noise and require small power to detect.

» Push gesture is a candidate; easy to recognize without
induction.

Benefits:
» Increased robustness against interference.
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Introducing a preamble gesture detection mode:

> Preamble gesture needs to be: hard to confuse with
noise and require small power to detect.

» Push gesture is a candidate; easy to recognize without
induction.

Benefits:
» Increased robustness against interference.

» Reduced power consumption.
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Future work

Native support on Wi-Fi devices for a cheap high frequency
sampling of Wi-Fi RSS.
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Native support on Wi-Fi devices for a cheap high frequency
sampling of Wi-Fi RSS.
» By inducing traffic at the Wi-Fi device level, the OS is
bypassed, which results in a higher throughput at a
reduced power level.
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Native support on Wi-Fi devices for a cheap high frequency
sampling of Wi-Fi RSS.
» By inducing traffic at the Wi-Fi device level, the OS is
bypassed, which results in a higher throughput at a
reduced power level.

» Reliable recognition capability at lower cost, compared
to, for example, introducing a completely new HW like
Google's Soli [4].
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Offline experiments

Prediction accuracies, training and prediction times for
different algorithms evaluated using Datasetl.

Algorithm Accuracy | Sample prediction time (ms)
K-NN DTW  90% (+£28) 964.15

FS 85% (+4.6) 0.01

STE 91% (£1.1) 26.86

LTS 93% (£2.3) 9.29

EE 93% (£1.7) 23.09

COTE 94% (42.4) 178.20

LSTM RNN  91% (+3.1) 7.04

STE, EE and COTE are ensemble methods that are
computationally heavy [12].
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